245 research outputs found

    Lorentz Symmetry and the Internal Structure of the Nucleon

    Full text link
    To investigate the internal structure of the nucleon, it is useful to introduce quantities that do not transform properly under Lorentz symmetry, such as the four-momentum of the quarks in the nucleon, the amount of the nucleon spin contributed by quark spin, etc. In this paper, we discuss to what extent these quantities do provide Lorentz-invariant descriptions of the nucleon structure.Comment: 6 pages, no figur

    g = 2 as a Gauge Condition

    Get PDF
    Charged matter spin-1 fields enjoy a nonelectromagnetic gauge symmetry when interacting with vacuum electromagnetism, provided their gyromagnetic ratio is 2.Comment: 5 pages, REVTeX, submitted to Phys Rev D Brief Report

    Correlation functions, Bell's inequalities and the fundamental conservation laws

    Full text link
    I derive the correlation function for a general theory of two-valued spin variables that satisfy the fundamental conservation law of angular momentum. The unique theory-independent correlation function is identical to the quantum mechanical correlation function. I prove that any theory of correlations of such discrete variables satisfying the fundamental conservation law of angular momentum violates the Bell's inequalities. Taken together with the Bell's theorem, this result has far reaching implications. No theory satisfying Einstein locality, reality in the EPR-Bell sense, and the validity of the conservation law can be constructed. Therefore, all local hidden variable theories are incompatible with fundamental symmetries and conservation laws. Bell's inequalities can be obeyed only by violating a conservation law. The implications for experiments on Bell's inequalities are obvious. The result provides new insight regarding entanglement, and its measures.Comment: LaTeX, 12pt, 11 pages, 2 figure

    The electromagnetic energy-momentum tensor

    Full text link
    We clarify the relation between canonical and metric energy-momentum tensors. In particular, we show that a natural definition arises from Noether's Theorem which directly leads to a symmetric and gauge invariant tensor for electromagnetic field theories on an arbitrary space-time of any dimension

    Dynamics of a self gravitating light-like matter shell: a gauge-invariant Lagrangian and Hamiltonian description

    Get PDF
    A complete Lagrangian and Hamiltonian description of the theory of self-gravitating light-like matter shells is given in terms of gauge-independent geometric quantities. For this purpose the notion of an extrinsic curvature for a null-like hypersurface is discussed and the corresponding Gauss-Codazzi equations are proved. These equations imply Bianchi identities for spacetimes with null-like, singular curvature. Energy-momentum tensor-density of a light-like matter shell is unambiguously defined in terms of an invariant matter Lagrangian density. Noether identity and Belinfante-Rosenfeld theorem for such a tensor-density are proved. Finally, the Hamiltonian dynamics of the interacting system: ``gravity + matter'' is derived from the total Lagrangian, the latter being an invariant scalar density.Comment: 20 pages, RevTeX4, no figure

    A note on "symmetric" vielbeins in bimetric, massive, perturbative and non perturbative gravities

    Get PDF
    We consider a manifold endowed with two different vielbeins EAμE^{A}{}_{\mu} and LAμL^{A}{}_{\mu} corresponding to two different metrics gμνg_{\mu\nu} and fμνf_{\mu\nu}. Such a situation arises generically in bimetric or massive gravity (including the recently discussed version of de Rham, Gabadadze and Tolley), as well as in perturbative quantum gravity where one vielbein parametrizes the background space-time and the other the dynamical degrees of freedom. We determine the conditions under which the relation gμνEAμLBν=gμνEBμLAνg^{\mu\nu} E^{A}{}_{\mu} L^{B}{}_{\nu} = g^{\mu\nu} E^{B}{}_{\mu} L^{A}{}_{\nu} can be imposed (or the "Deser-van Nieuwenhuizen" gauge chosen). We clarify and correct various statements which have been made about this issue.Comment: 20 pages. Section 7, prop. 6 and 7. added. Some results made more precis

    A test generation framework for quiescent real-time systems

    Get PDF
    We present an extension of Tretmans theory and algorithm for test generation for input-output transition systems to real-time systems. Our treatment is based on an operational interpretation of the notion of quiescence in the context of real-time behaviour. This gives rise to a family of implementation relations parameterized by observation durations for quiescence. We define a nondeterministic (parameterized) test generation algorithm that generates test cases that are sound with respect to the corresponding implementation relation. Also, the test generation is exhaustive in the sense that for each non-conforming implementation a test case can be generated that detects the non-conformance

    Common Causes and The Direction of Causation

    Get PDF
    Is the common cause principle merely one of a set of useful heuristics for discovering causal relations, or is it rather a piece of heavy duty metaphysics, capable of grounding the direction of causation itself? Since the principle was introduced in Reichenbach’s groundbreaking work The Direction of Time (1956), there have been a series of attempts to pursue the latter program—to take the probabilistic relationships constitutive of the principle of the common cause and use them to ground the direction of causation. These attempts have not all explicitly appealed to the principle as originally formulated; it has also appeared in the guise of independence conditions, counterfactual overdetermination, and, in the causal modelling literature, as the causal markov condition. In this paper, I identify a set of difficulties for grounding the asymmetry of causation on the principle and its descendents. The first difficulty, concerning what I call the vertical placement of causation, consists of a tension between considerations that drive towards the macroscopic scale, and considerations that drive towards the microscopic scale—the worry is that these considerations cannot both be comfortably accommodated. The second difficulty consists of a novel potential counterexample to the principle based on the familiar Einstein Podolsky Rosen (EPR) cases in quantum mechanics

    Optimal Control of Quantum Dynamics : A New Theoretical Approach

    Full text link
    A New theoretical formalism for the optimal quantum control has been presented. The approach stems from the consideration of describing the time-dependent quantum system in terms of the real physical observables, viz., the probability density rho(x,t) and the quantum current j(x,t) which is well documented in the Bohm's hydrodynamical formulation of quantum mechanics. The approach has been applied for manipulating the vibrational motion of HBr in its ground electronic state under an external electric field.Comment: 4 figure

    Physical theory of the twentieth century and contemporary philosophy

    Get PDF
    It has been shown that the criticism of Pauli as well as of Susskind and Glogover may be avoided if the standard quantum-mechanical mathematical model has been suitably extended. There is not more any reason for Einstein's citicism, either, if in addition to some new results concerning Bell's inequalities and Belifante's argument are taken into account. The ensemble interpretation of quantum mechanics (or the hidden-variable theory) should be preferred, which is also supported by the already published results of experiments with three polarizers. Greater space in the text has been devoted also to the discussion of epistemological problems and some philosophical consequences.Comment: 12 page
    corecore